Global Warming

Global warming and climate change can both refer to the observed century-scale rise in the average temperature of the Earth's climate system and its related effects, although climate change can also refer to any historic change in climate. Multiple lines of scientific evidence show that the climate system is warming More than 90% of the additional energy stored in the climate system since 1970 has gone into ocean warming; the remainder has melted ice, and warmed the continents and atmosphere. Many of the observed changes since the 1950s are unprecedented over decades to millennia.

Greenhouse Gases

The greenhouse effect is the process by which absorption and emission of infrared radiation by gases in a planet's atmosphere warm its lower atmosphere and surface. It was proposed by Joseph Fourier in 1824, discovered in 1860 by John Tyndall, was first investigated quantitatively by Svante Arrhenius in 1896,[63] and was developed in the 1930s through 1960s by Guy Stewart Callendar.

Particulates and Soot

Global dimming, a gradual reduction in the amount of global direct irradiance at the Earth's surface, was observed from 1961 until at least 1990. The main cause of this dimming is particulates produced by volcanoes and human made pollutants, which exerts a cooling effect by increasing the reflection of incoming sunlight. The effects of the products of fossil fuel combustion – CO2 and aerosols – have partially offset one another in recent decades, so that net warming has been due to the increase in non-CO2 greenhouse gases such as methane. Radiative forcing due to particulates is temporally limited due to wet deposition, which causes them to have an atmospheric lifetime of one week. Carbon dioxide has a lifetime of a century or more, and as such, changes in particulate concentrations will only delay climate changes due to carbon dioxide. Black carbon is second only to carbon dioxide for its contribution to global warming.

Solar Activity

Since 1978, solar irradiance has been measured by satellites. These measurements indicate that the Sun's output has not increased since 1978, so the warming during the past 30 years cannot be attributed to an increase in solar energy reaching the Earth.

Climate models have been used to examine the role of the sun in recent climate change. Models are unable to reproduce the rapid warming observed in recent decades when they only take into account variations in solar output and volcanic activity. Models are, however, able to simulate the observed 20th century changes in temperature when they include all of the most important external forcings, including human influences and natural forcings.

Another line of evidence against the sun having caused recent climate change comes from looking at how temperatures at different levels in the Earth's atmosphere have changed.[107] Models and observations show that greenhouse warming results in warming of the lower atmosphere (called the troposphere) but cooling of the upper atmosphere (called the stratosphere).[108][109] Depletion of the ozone layer by chemical refrigerants has also resulted in a strong cooling effect in the stratosphere. If the sun were responsible for observed warming, warming of both the troposphere and stratosphere would be expected.


Solar Flares

A solar flare is a sudden flash of brightness observed over the Sun's surface or the solar limb, which is interpreted as a large energy release of up to 6 × 1025 joules of energy (about a sixth of the total energy output of the Sun each second or 160,000,000,000 megatons of TNT equivalent, over 25,000 times more energy than released from the impact of Comet Shoemaker–Levy 9 with Jupiter). They are often, but not always, followed by a colossal coronal mass ejection. The flare ejects clouds of electrons, ions, and atoms through the corona of the sun into space. These clouds typically reach Earth a day or two after the event. The term is also used to refer to similar phenomena in other stars, where the term stellar flare applies.

Cause

Flares occur when accelerated charged particles, mainly electrons, interact with the plasma medium. Scientific research has shown that the phenomenon of magnetic reconnection is responsible for the acceleration of the charged particles. On the Sun, magnetic reconnection may happen on solar arcades – a series of closely occurring loops of magnetic lines of force. These lines of force quickly reconnect into a low arcade of loops leaving a helix of magnetic field unconnected to the rest of the arcade. The sudden release of energy in this reconnection is the origin of the particle acceleration. The unconnected magnetic helical field and the material that it contains may violently expand outwards forming a coronal mass ejection. This also explains why solar flares typically erupt from what are known as the active regions on the Sun where magnetic fields are much stronger on average.

Although there is a general agreement on the flares' causes, the details are still not well known. It is not clear how the magnetic energy is transformed into the particle kinetic energy, nor is it known how the particles are accelerated to energies as high as 10 MeV (mega electron volt) and beyond. There are also some inconsistencies regarding the total number of accelerated particles, which sometimes seems to be greater than the total number in the coronal loop. Scientists are unable to forecast flares, even to this day.

Classification

Solar flares are classified as A, B, C, M or X according to the peak flux (in watts per square metre, W/m2) of 100 to 800 picometre X-rays near Earth, as measured on the GOES spacecraft.

Within a class there is a linear scale from 1 to 9.n (apart from X), so an X2 flare is twice as powerful as an X1 flare, and is four times more powerful than an M5 flare. X class flares up to at least X28 have been recorded.

However, the extreme event in 1859 is theorised to have been well over X40 so a Z class designation is possible.

Hazards

Solar flares strongly influence the local space weather in the vicinity of the Earth. They can produce streams of highly energetic particles in the solar wind, known as a solar proton event. These particles can impact the Earth's magnetosphere (see main article at geomagnetic storm), and present radiation hazards to spacecraft and astronauts. Additionally, massive solar flares are sometimes accompanied by coronal mass ejections (CMEs) which can trigger geomagnetic storms that have been known to disable satellites and knock out terrestrial electric power grids for extended periods of time.

The soft X-ray flux of X class flares increases the ionization of the upper atmosphere, which can interfere with short-wave radio communication and can heat the outer atmosphere and thus increase the drag on low orbiting satellites, leading to orbital decay. Energetic particles in the magnetosphere contribute to the aurora borealis and aurora australis. Energy in the form of hard x-rays can be damaging to spacecraft electronics and are generally the result of large plasma ejection in the upper chromosphere.

The radiation risks posed by solar flares are a major concern in discussions of a manned mission to Mars, the moon, or other planets. Energetic protons can pass through the human body, causing biochemical damage, presenting a hazard to astronauts during interplanetary travel. Some kind of physical or magnetic shielding would be required to protect the astronauts. Most proton storms take at least two hours from the time of visual detection to reach Earth's orbit. A solar flare on January 20, 2005 released the highest concentration of protons ever directly measured,[11] giving astronauts as little as 15 minutes to reach shelter.

History

Optical observations. Richard Carrington observed a flare for the first time on 1 September 1859 projecting the image produced by an optical telescope, without filters. It was an extraordinarily intense white light flare. Since flares produce copious amounts of radiation at Ha, adding a narrow ( ˜1 Å) passband filter centered at this wavelength to the optical telescope, allows the observation of not very bright flares with small telescopes. For years Ha was the main, if not the only, source of information about solar flares. Other passband filters are also used.

Radio observations. During World War II, on 25 and 26 February 1942, British radar operators observed radiation that Stanley Hey interpreted as solar emission. Their discovery did not go public until the end of the conflict. The same year Southworth also observed the Sun in radio, but as with Hey, his observations were only known after 1945. In 1943 Grote Reber was the first to report radioastronomical observations of the Sun at 160 MHz. The fast development of radioastronomy revealed new peculiarities of the solar activity like storms and bursts related to the flares. Today ground-based radiotelescopes observe the Sun from ~100 MHz up to 400 GHz.

Space telescopes. Since the beginning of space exploration, telescopes have been sent to space, where they work at wavelengths shorter than UV, which are completely absorbed by the atmosphere, and where flares may be very bright. Since the 1970s, the GOES series of satellites observe the Sun in soft X-rays, and their observations became the standard measure of flares, diminishing the importance of the Ha classification. Hard X-rays were observed by many different instruments, the most important today being the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Nonetheless, UV observations are today the stars of solar imaging with their incredible fine details that reveal the complexity of the solar corona. Spacecraft may also bring radio detectors at very very long wavelengths (as long as a few kilometers) that cannot propagate through the ionosphere.

Impact Event

An impact event is a collision between celestial objects causing measurable effects. Impact events have physical consequences and have been found to regularly occur in planetary systems, though the most frequent involve asteroids, comets or meteoroids and have minimal impact. When large objects impact terrestrial planets like the Earth, there can be significant physical and biospheric consequences, though atmospheres mitigate many surface impacts through atmospheric entry. Impact structures are dominant landforms on many of the System's solid objects and present the strongest empirical evidence for their frequency and scale.

Impact events appear to have played a significant role in the evolution of the Solar System since its formation. Major impact events have significantly shaped Earth's history, have been implicated in the formation of the Earth–Moon system, the evolutionary history of life, the origin of water on Earth and several mass extinctions. Notable impact events include the Late Heavy Bombardment, which occurred early in history of the Earth–Moon system and the Chicxulub impact, 66 million years ago, believed to be the cause of the Cretaceous–Paleogene extinction event.

Throughout recorded history, hundreds of Earth impacts (and exploding bolides) have been reported, with some occurrences causing deaths, injuries, property damage or other significant localised consequences.[1] One of the best-known recorded impacts in modern times was the Tunguska event, which occurred in Siberia, Russia, in 1908. The 2013 Chelyabinsk meteor event is the only known such event to result in a large number of injuries, and the Chelyabinsk meteor is the largest recorded object to have encountered the Earth since the Tunguska event.

The most notable non-terrestrial event is the Comet Shoemaker–Levy 9 impact, which provided the first direct observation of an extraterrestrial collision of Solar System objects, when the comet broke apart and collided with Jupiter in July 1994. Most of the observed extrasolar impacts are the slow collision of galaxies; however, in 2014, one of the first massive terrestrial impacts observed was detected around the star NGC 2547 ID8 by NASA's Spitzer space telescope and confirmed by ground observations.[2] Impact events have been a plot and background element in science fiction.

Frequency and Risk

Small objects frequently collide with Earth. There is an inverse relationship between the size of the object and the frequency that such objects hit Earth. The lunar cratering record shows that the frequency of impacts decreases as approximately the cube of the resulting crater's diameter, which is on average proportional to the diameter of the impactor.[4] Asteroids with a 1 km (0.62 mi) diameter strike Earth every 500,000 years on average.[5] Large collisions – with 5 km (3 mi) objects – happen approximately once every twenty million years.[6] The last known impact of an object of 10 km (6 mi) or more in diameter was at the Cretaceous–Paleogene extinction event 66 million years ago.

The energy released by an impactor depends on diameter, density, velocity, and angle. The diameter of most near-Earth asteroids that have not been studied by radar or infrared can generally only be estimated within about a factor of 2 based on the asteroid brightness. The density is generally assumed because the diameter and mass are also generally estimates. The minimum impact velocity on Earth is 11 km/s with asteroid impacts averaging around 17 km/s. The most probable impact angle is 45 degrees.

Stony asteroids with a diameter of 4 meters (13 ft) impact Earth approximately once per year.[6] Asteroids with a diameter of 7 meters enter Earth's atmosphere with as much kinetic energy as Little Boy (the atomic bomb dropped on Hiroshima, approximately 16 kilotons of TNT) about every 5 years, but the air burst only generates a much reduced 5 kilotons of TNT.[6] These ordinarily explode in the upper atmosphere, and most or all of the solids are vaporized.[8] Objects with a diameter of roughly 50 m (164 ft) strike Earth approximately once every thousand years,[9] producing explosions comparable to the one known to have detonated roughly 8.5 kilometers (28,000 ft) above Tunguska in 1908.

Objects with a diameter less than 1 m (3.3 ft) are called meteoroids and seldom make it to the ground to become meteorites. An estimated 500 meteorites reach the surface each year, but only 5 or 6 of these typically create a weather radar signature with a strewn field large enough to be recovered and be made known to scientists.

The late Eugene Shoemaker of the U.S. Geological Survey estimated the rate of Earth impacts, concluding that an event about the size of the nuclear weapon that destroyed Hiroshima occurs about once a year. Such events would seem to be spectacularly obvious, but they generally go unnoticed for a number of reasons: the majority of the Earth's surface is covered by water; a good portion of the land surface is uninhabited; and the explosions generally occur at relatively high altitude, resulting in a huge flash and thunderclap but no real damage.

Although no human is known to have been killed directly by an impact, over 1000 people were injured by the Chelyabinsk meteor airburst event over Russia in 2013. In 2005 it was estimated that the chance of a single person born today dying due to an impact is around 1 in 200,000. The four-meter-sized asteroids 2008 TC3 and 2014 AA are the only known objects to be detected before impacting the Earth.

Geological Significance

Impacts have had, during the history of the Earth, a significant geological and climatic influence.

The Moon's existence is widely attributed to a huge impact early in Earth's history. Impact events earlier in the history of Earth have been credited with creative as well as destructive events; it has been proposed that impacting comets delivered the Earth's water, and some have suggested that the origins of life may have been influenced by impacting objects by bringing organic chemicals or lifeforms to the Earth's surface, a theory known as exogenesis.

These modified views of Earth's history did not emerge until relatively recently, chiefly due to a lack of direct observations and the difficulty in recognizing the signs of an Earth impact because of erosion and weathering. Large-scale terrestrial impacts of the sort that produced the Barringer Crater, locally known as Meteor Crater, northeast of Flagstaff, Arizona, are rare. Instead, it was widely thought that cratering was the result of volcanism: the Barringer Crater, for example, was ascribed to a prehistoric volcanic explosion (not an unreasonable hypothesis, given that the volcanic San Francisco Peaks stand only 30 miles (48 km) to the west). Similarly, the craters on the surface of the Moon were ascribed to volcanism.

It was not until 1903–1905 that the Barringer Crater was correctly identified as an impact crater, and it was not until as recently as 1963 that research by Eugene Merle Shoemaker conclusively proved this hypothesis. The findings of late 20th-century space exploration and the work of scientists such as Shoemaker demonstrated that impact cratering was by far the most widespread geological process at work on the Solar System's solid bodies. Every surveyed solid body in the Solar System was found to be cratered, and there was no reason to believe that the Earth had somehow escaped bombardment from space. In the last few decades of the twentieth century, a large number of highly modified impact craters began to be identified. The largest of these include Vredefort Crater, Sudbury Crater, Chicxulub Crater, and Manicouagan Crater. The first observation of a major impact event occurred in 1994: the collision of the comet Shoemaker-Levy 9 with Jupiter. To date, no such events have been observed on Earth.

Based on crater formation rates determined from the Earth's closest celestial partner, the Moon, astrogeologists have determined that during the last 600 million years, the Earth has been struck by 60 objects of a diameter of 5 km (3 mi) or more. The smallest of these impactors would release the equivalent of 10 million megatons of TNT and leave a crater 95 km (60 mi) across. For comparison, the largest nuclear weapon ever detonated, the Tsar Bomba, had a yield of 50 megatons.

Besides direct effect of asteroid impacts on a planet's surface topography, global climate and life, recent studies have shown that several consecutive impacts can have effect on the dynamo mechanism at a planet's core responsible for maintaining the magnetic field of the planet, and can eventually shut down the planet's magnetic field.

While numerous impact craters have been confirmed on land or in the shallow seas over continental shelves, no impact craters in the deep ocean have been widely accepted by the scientific community. Impacts of projectiles as large as one km in diameter are generally thought to explode before reaching the sea floor, but it is unknown what would happen if a much larger impactor struck the deep ocean. The lack of a crater, however, does not mean that an ocean impact would not have dangerous implications for humanity. Some scholars have argued that an impact event in an ocean or sea may create a megatsunami (a giant wave), which can cause destruction both at sea and on land along the coast, but this is disputed.

An impact event may cause a mantle plume (volcanism) at the antipodal point of the impact.

Biospheric Effects

The effect of impact events on the biosphere has been the subject of scientific debate. Several theories of impact-related mass extinction have been developed. In the past 500 million years there have been five generally accepted major mass extinctions that on average extinguished half of all species. One of the largest mass extinctions to have affected life on Earth was the Permian-Triassic, which ended the Permian period 250 million years ago and killed off 90 percent of all species; life on Earth took 30 million years to recover. The cause of the Permian-Triassic extinction is still a matter of debate; the age and origin of proposed impact craters, i.e. the Bedout High structure, hypothesized to be associated with it are still controversial. The last such mass extinction led to the demise of the dinosaurs and coincided with a large meteorite impact; this is the Cretaceous–Paleogene extinction event (also known as the K–T or K–Pg extinction event), which occurred 66 million years ago. There is no definitive evidence of impacts leading to the three other major mass extinctions.

In 1980, physicist Luis Alvarez; his son, geologist Walter Alvarez; and nuclear chemists Frank Asaro and Helen V. Michael from the University of California, Berkeley discovered unusually high concentrations of iridium in a specific layer of rock strata in the Earth's crust. Iridium is an element that is rare on Earth but relatively abundant in many meteorites. From the amount and distribution of iridium present in the 65-million-year-old "iridium layer", the Alvarez team later estimated that an asteroid of 10 to 14 km (6 to 9 mi) must have collided with the earth. This iridium layer at the Cretaceous–Paleogene boundary has been found worldwide at 100 different sites. Multidirectionally shocked quartz (coesite), which is only known to form as the result of large impacts or atomic bomb explosions, has also been found in the same layer at more than 30 sites. Soot and ash at levels tens of thousands times normal levels were found with the above.

Anomalies in chromium isotopic ratios found within the K-T boundary layer strongly support the impact theory. Chromium isotopic ratios are homogeneous within the earth, and therefore these isotopic anomalies exclude a volcanic origin, which has also been proposed as a cause for the iridium enrichment. Further, the chromium isotopic ratios measured in the K-T boundary are similar to the chromium isotopic ratios found in carbonaceous chondrites. Thus a probable candidate for the impactor is a carbonaceous asteroid, but also a comet is possible because comets are assumed to consist of material similar to carbonaceous chondrites.

Probably the most convincing evidence for a worldwide catastrophe was the discovery of the crater which has since been named Chicxulub Crater. This crater is centered on the Yucatán Peninsula of Mexico and was discovered by Tony Camargo and Glen Pentfield while working as geophysicists for the Mexican oil company PEMEX. What they reported as a circular feature later turned out to be a crater estimated to be 180 km (110 mi) in diameter. This convinced the vast majority of scientists that this extinction resulted from a point event that is most probably an extraterrestrial impact and not from increased volcanism and climate change (which would spread its main effect over a much longer time period).

Recently, several proposed craters around the world have been dated to approximately the same age as Chicxulub, such as the Silverpit crater in the United Kingdom, the Boltysh crater in Ukraine and the Shiva crater near India. This has led to the suggestion that the Chicxulub impact was one of several that occurred almost simultaneously, perhaps due to a disrupted comet impacting the Earth in a similar manner to the collision of Comet Shoemaker-Levy 9 with Jupiter in 1994; however, the uncertain age and provenance of these structures leaves the hypothesis without widespread support.

The lack of high concentrations of iridium and shocked quartz has prevented the acceptance of the idea that the Permian extinction was also caused by an impact. During the late Permian all the continents were combined into one supercontinent named Pangaea and all the oceans formed one superocean, Panthalassa. If an impact occurred in the ocean and not on land at all, then there would be little shocked quartz released (since oceanic crust has relatively little silica) and much less material.

Although there is now general agreement that there was a huge impact at the end of the Cretaceous that led to the iridium enrichment of the K-T boundary layer, remnants have been found of other, smaller impacts, some nearing half the size of the Chicxulub crater, which did not result in any mass extinctions, and there is no clear linkage between an impact and any other incident of mass extinction.

Paleontologists David M. Raup and Jack Sepkoski have proposed that an excess of extinction events occurs roughly every 26 million years (though many are relatively minor). This led physicist Richard A. Muller to suggest that these extinctions could be due to a hypothetical companion star to the Sun called Nemesis periodically disrupting the orbits of comets in the Oort cloud, leading to a large increase in the number of comets reaching the inner Solar System where they might hit Earth. Physicist Adrian Melott and paleontologist Richard Bambach have more recently verified the Raup and Sepkoski finding, but argue that it is not consistent with the characteristics expected of a Nemesis-style periodicity.

Sociological and Cultural Effects

An impact event is commonly seen as a scenario that would bring about the end of civilization. In 2000, Discover Magazine published a list of 20 possible sudden doomsday scenarios with an impact event listed as the most likely to occur.

A joint Pew Research Center/Smithsonian survey from April 21–26, 2010 found that 31 percent of Americans believed that an asteroid will collide with Earth by 2050. A majority (61 percent) disagreed.